The TC7MZ4051/4052/4053FK are high-speed, low-voltage drive analog multiplexer/demultiplexers using silicon gate CMOS technology. In 3 V and 5 V systems these can achieve high-speed operation with the low power dissipation that is a feature of CMOS.

The TC7MZ4051/4052/4053FK offer analog/digital signal selection as well as mixed signals. The 4051 has an 8 -channel configuration, the 4052 has an 4 -channel $\times 2$ configuration, and

Weight: 0.02 g (typ.) the 4053 has a 2 -channel $\times 3$ configuration.

The switches for each channel are turned ON by the control pin digital signals.
Although the control signal logical amplitude (VCC - GND) is small, the device can perform large-amplitude (VCC - VEE) signal switching.

For example, if $\mathrm{VCC}=3 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, and VEE $=-3 \mathrm{~V}$, signals between -3 V and +3 V can be switched from the logical circuit using a single 3 V power supply.

All input pins are equipped with a newly developed input protection circuit that avoids the need for a diode on the plus side (forward side from the input to the VCC). As a result, for example, 5 V signals can be permitted on the inputs even when the power supply voltage to the circuits is off. As a result of this input power protection, the TC7MZ4051/4052/4053FK can be used in a variety of applications, including in the system which has two power supplies, and in battery backup circuits.

Features

- Low ON resistance: $\mathrm{R}_{\mathrm{on}}=65 \Omega$ (typ.) $(\mathrm{VCC}-\mathrm{VEE}=3 \mathrm{~V})$

$$
\mathrm{R}_{\mathrm{on}}=45 \Omega \text { (typ.) }(\mathrm{VCC}-\mathrm{VEE}=6 \mathrm{~V})
$$

- High speed: $\mathrm{t}_{\mathrm{pd}}=5 \mathrm{~ns}$ (typ.) $\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right)$
- Low power dissipation: ICC $=4 \mu \mathrm{~A}(\max)\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
- Input level: $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}(\max)\left(\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}\right)$

$$
\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}(\mathrm{~min})\left(\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}\right)
$$

- Power down protection is provided on all control inputs
- Pin and function compatible with $74 \mathrm{HC} 4051 / 4052 / 4053$

[^0]
Pin Assignment (top view)

Truth Table

Control Inputs				"ON" Channel		
Inhibit	C*	B	A	MZ4051	MZ4052	MZ4053
L	L	L	L	0	0X, OY	0X, OY, OZ
L	L	L	H	1	1X, 1Y	1X, 0Y, 0Z
L	L	H	L	2	2X, 2Y	0X, 1Y, 0Z
L	L	H	H	3	$3 \mathrm{X}, 3 \mathrm{Y}$	1X, 1Y, 0Z
L	H	L	L	4	-	0X, 0Y, 1Z
L	H	L	H	5	-	1X, 0Y, 1Z
L	H	H	L	6	-	0X, 1Y, 1Z
L	H	H	H	7	-	1X, 1Y, 1Z
H	X	X	X	None	None	None

[^1]
System Diagram

TC7MZ4051FK

TC7MZ4052FK

TC7MZ4053FK

Absolute Maximum Ratings

Characteristics	Symbol	Rating	Unit
Power supply voltage	V_{CC}	$-0.5 \sim 7.0$	
	$\mathrm{~V}_{\mathrm{CC}} \sim \mathrm{V}_{\mathrm{EE}}$	$-0.5 \sim 7.0$	
	V_{IN}	$-0.5 \sim 7.0$	V
Switch I/O voltage	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}$	$\mathrm{V}_{\mathrm{EE}}-0.5 \sim \mathrm{~V}_{\mathrm{CC}}+0.5$	V
Input diode current	I_{IK}	-20	mA
I/O diode current	$\mathrm{I}_{\mathrm{IOK}}$	± 20	mA
Switch through current	I_{T}	± 25	mA
DC V_{CC} or ground current	I_{CC}	± 50	mA
Power dissipation	P_{D}	mW	
Storage temperature	$\mathrm{T}_{\mathrm{Stg}}$	180	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Characteristics	Symbol	Rating	Unit
Power supply voltage	V_{CC}	$2 \sim 6$	
	$\mathrm{~V}_{\mathrm{EE}}$	$-4 \sim 0$	
	$\mathrm{~V}_{\mathrm{CC}} \sim \mathrm{V}_{\mathrm{EE}}$	$2 \sim 6$	V
Input voltage	V_{IN}	$0 \sim 6.0$	V
Switch I/O voltage	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}$	$\mathrm{V}_{\mathrm{EE}} \sim \mathrm{V}_{\mathrm{CC}}$	${ }^{\circ} \mathrm{C}$
Operating temperature	$\mathrm{T}_{\mathrm{opr}}$	$-40 \sim 85$	$\mathrm{~ns} / \mathrm{V}$
Input rise and fall time	$\mathrm{dt} / \mathrm{dv}$	$0 \sim 100$	

Electrical Characteristics
DC Electrical Characteristics

Characteristics		Symbol	Test Condition			$\mathrm{Ta}=25^{\circ} \mathrm{C}$			$\mathrm{Ta}=-40 \sim 85^{\circ} \mathrm{C}$		Unit	
		$\mathrm{V}_{\text {EE }}(\mathrm{V})$		$V_{\text {cc }}(\mathrm{V})$	Min	Typ.	Max	Min	Max			
Input voltage	High-level		V_{IH}	-		2.0	1.5	-	-	1.5	-	V
		3.0				2.0	-	-	2.0	-		
		6.0				4.2	-	-	4.2	-		
	Low-level	$\mathrm{V}_{\text {IL }}$	-		2.0	-	-	0.5	-	0.5		
					3.0	-	-	0.8	-	0.8		
					6.0	-	-	1.8	-	1.8		
ON resistance		RON	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{I} / \mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{I}_{\mathrm{I} / \mathrm{O}}=2 \mathrm{~mA} \end{aligned}$	GND	3.0	-	-	150	-	180	Ω	
		-3.0		3.0	-	-	100	-	125			
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{I} / \mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{I}_{\mathrm{I} / \mathrm{O}}=2 \mathrm{~mA} \end{aligned}$	GND	2.0	-	-	-	-	-			
		GND	3.0	-	50	120	-	150				
		-3.0	3.0	-	30	80	-	100				
Difference of ON resistance between switches			$\Delta \mathrm{R}_{\text {ON }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{I} / \mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{I}_{\mathrm{I} / \mathrm{O}}=2 \mathrm{~mA} \end{aligned}$	GND	2.0	-	10	-	-	-	Ω
		GND			3.0	-	5	15	-	20		
		-3.0			3.0	-	5	10	-	15		
Input/Output leakage current (switch OFF)			IOFF	$\begin{aligned} & V_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \end{aligned}$	GND	3.0	-	-	± 0.25	-	± 2.5	$\mu \mathrm{A}$
		-3.0			3.0	-	-	± 0.5	-	5.0		
Input/Output leakage current (switch ON, output open)		IIN	$\begin{aligned} & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \end{aligned}$	GND	3.0	-	-	± 0.25	-	± 2.5	$\mu \mathrm{A}$	
		-3.0		3.0	-	-	± 0.5	-	± 5.0			
Control input	rrent		IIN	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	GND	6.0	-	-	± 0.1	-	± 0.1	$\mu \mathrm{A}$
Quiescent supply current		ICC	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	GND	3.0	-	-	4.0	-	40.0	$\mu \mathrm{A}$	
		-3.0		3.0	-	-	8.0	-	80.0			

AC Electrical Characteristics (CL=50 pF, Input: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=\mathbf{3 n s}, \mathrm{GND}=0 \mathrm{~V}$)

Characteristics	Symbol	Test Condition				$\mathrm{Ta}=25^{\circ} \mathrm{C}$			$\mathrm{Ta}=-40 \sim 85^{\circ} \mathrm{C}$		Unit
				$\mathrm{V}_{\text {EE }}(\mathrm{V})$	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Min	Typ.	Max	Min	Max	
Phase difference between input and output	¢ / O	All types		GND	2.0	-	10		-		ns
				GND	3.0	-	5		-		
				GND	4.5	-	4		-		
				-3.0	3.0	-	3		-		
Output enable time	$\begin{aligned} & \mathrm{t}_{\mathrm{pZL}} \\ & \mathrm{t}_{\mathrm{pZZH}} \end{aligned}$	4051	Figure 1, Figure 5 (Note1)	GND	2.0	-			-		ns
				GND	3.0	-	8		-		
				GND	4.5	-			-		
				-3.0	3.0	-			-		
		4052	Figure 1, Figure 5 (Note1)	GND	2.0	-			-		
				GND	3.0	-	8		-		
				GND	4.5	-			-		
				-3.0	3.0	-			-		
		4053	Figure 1, Figure 5 (Note1)	GND	2.0	-			-		
				GND	3.0	-	6		-		
				GND	4.5	-			-		
				-3.0	3.0	-			-		
Output disable time	$\begin{array}{r} \mathrm{t}_{\mathrm{pLZ}} \\ \mathrm{t}_{\mathrm{pHZ}} \end{array}$	4051	Figure 1, Figure 5 (Note1)	GND	2.0	-			-		ns
				GND	3.0	-	10		-		
				GND	4.5	-			-		
				-3.0	3.0	-			-		
		4052	Figure 1, Figure 5 (Note1)	GND	2.0	-			-		
				GND	3.0	-	10		-		
				GND	4.5	-			-		
				-3.0	3.0	-			-		
		4053	Figure 1, Figure 5 (Note1)	GND	2.0	-			-		
				GND	3.0	-	9		-		
				GND	4.5	-			-		
				-3.0	3.0	-			-		
Control input capacitance	C_{in}	All types (Note2)		-	-	-					pF
COMMON terminal capacitance	$\mathrm{C}_{\text {IS }}$	$\begin{aligned} & 4051 \\ & 4052 \\ & 4053 \end{aligned}$	Figure 2 (Note2)	-3.0	3.0	-	TBD	-	-	-	pF
SWITCH terminal capacitance	Cos	$\begin{aligned} & 4051 \\ & 4052 \\ & 4053 \end{aligned}$	Figure 2 (Note2)	-3.0	3.0	-	TBD	-	-	-	pF
Feedthrough capacitance	CIOS	$\begin{gathered} 4051 \\ 4052) \\ 4053 \end{gathered}$	Figure 2 (Note2)	-3.0	3.0	-	TBD	-	-	-	pF
Power dissipation capacitance	CPD	$\begin{aligned} & 4051 \\ & 4052 \\ & 4053 \end{aligned}$	Figure 2 (Note2)	GND	6.0	-	TBD	-	-	-	pF

Note1: $\mathrm{R}_{\mathrm{L}}=500 \Omega$
Note2: $\mathrm{C}_{\mathrm{in}}, \mathrm{C}_{\mathrm{I}}, \mathrm{C}_{\text {OS }}$ and $\mathrm{C}_{\mathrm{IOS}}$ are guaranteed by the design.
Note3: CPD is defined as the value of the internal equivalent capacitance of IC which is calculated from the operating current can be obtained by the equiation:

$$
\text { ICC (opr) }=\text { CPD } \cdot V_{C C} \cdot f I N+I C C
$$

Analog Switch Characteristics (GND $=0 \mathrm{~V}, \mathrm{Ta}=\mathbf{2 5}^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Condition				Typ.	Unit
				$\mathrm{V}_{\mathrm{EE}}(\mathrm{V})$	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$		
Frequency response (switch ON)		Adjust V_{IN} so that the output is 0 dBm . Now measure the frequency when the output drops -3 dB . $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{f} \mathrm{IN}=1 \mathrm{MHz}$ sine wave Figure 3	All (Note4)				
	$\mathrm{f}_{\text {max }}$		$\begin{aligned} & 4051 \\ & 4052 \text { (Note5) } \\ & 4053 \end{aligned}$	-3.0	3.0		MHz
Crosstalk (between any switches)		Measure the leak voltage when V_{IN} is that the input is 0 dBm . $\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{f}_{\mathrm{N}}=1 \mathrm{MHz},$ Figure 4	is adjusted so , sine wave	-3.0	3.0	-50	dB

Note4: Input COMMON terminal, and measured at SWITCH terminal.
Note5: Input SWITCH terminal, and measured at COMMON terminal.

* : These characterictics are determined by design of devices.

Switch pin

Figure $1 \mathrm{t}_{\mathrm{pLZ}}, \mathrm{t}_{\mathrm{pHz}}, \mathrm{t}_{\mathrm{pzL}}, \mathrm{t}_{\mathrm{pzH}}$

Figure $2 \mathrm{C}_{\mathrm{IOS}}, \mathrm{C}_{\mathrm{IS}}, \mathrm{C}_{\mathrm{OS}}$

Figure 3 Frequency Response (switch on)

Figure 4 Cross Talk (between any two switches)

AC Waveform

Figure $5 \mathrm{t}_{\mathrm{pLZ}}, \mathrm{t}_{\mathrm{pHZ}}, \mathrm{t}_{\mathrm{pZL}}, \mathrm{t}_{\mathrm{pZH}}$

Package Dimensions

VSSOP16-P-0030-0.50

Weight: 0.02 g (typ.)

[^0]: - TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
 - The products described in this document are subject to the foreign exchange and foreign trade laws.
 - The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 - The information contained herein is subject to change without notice.

[^1]: X: Don't care, *: Except MZ4052

